2023 ICML Workshop on Computational Biology (Contributed Talk)

Single-cell RNA-seq data imputation using Feature Propagation

Sukwon Yun*, Junseok Lee*, Chanyoung Park

Korea Advanced Institute of Science and Technology (KAIST)

TABLE OF CONTENTS

Background

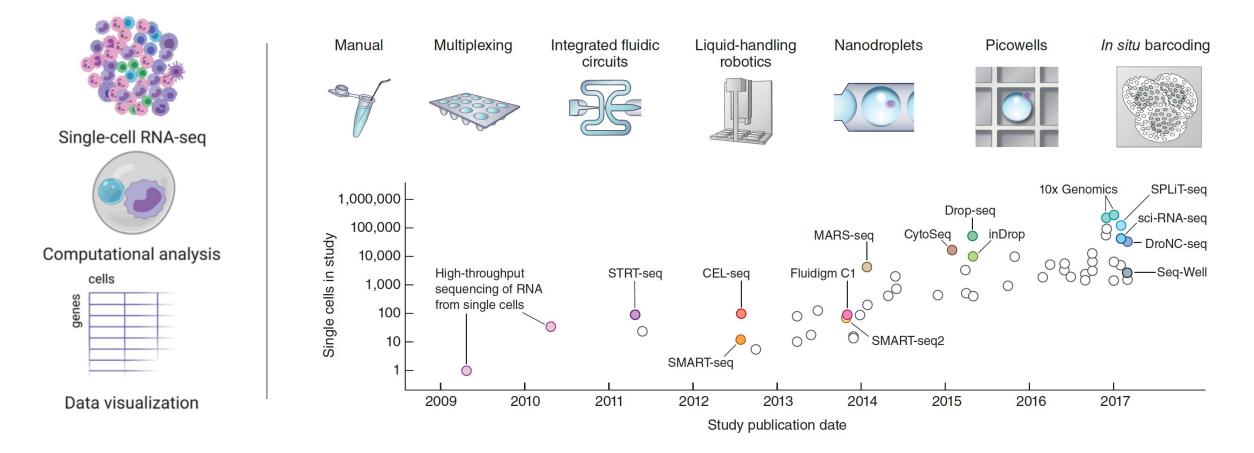
- Single-cell RNA-seq
- As a Graph: Feature Propagation

Motivation

- Single-cell RNA-seq data imputation using Feature Propagation
- scFP: single-cell Feature Propagation
- Experiments
- Conclusion

BACKGROUND: SINGLE-CELL RNA-SEQ

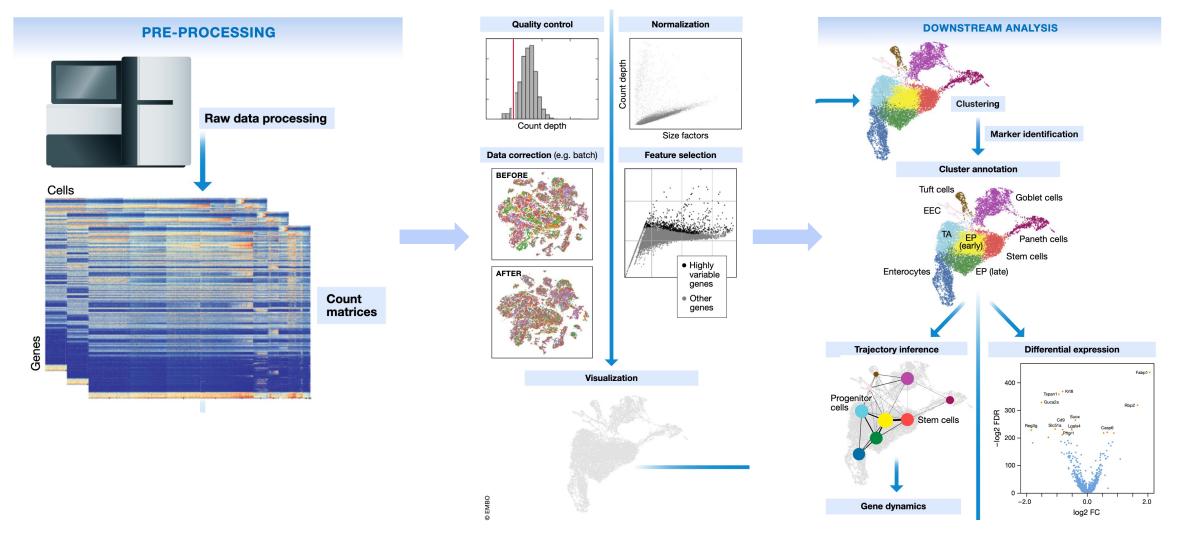
Advances in single-cell RNA-seq



Svensson, Valentine, Roser Vento-Tormo, and Sarah A. Teichmann. "Exponential scaling of single-cell RNA-seq in the past decade." *Nature protocols* 13.4 (2018): 599-604. Acosta, Jean, Daniel Ssozi, and Peter van Galen. "Single-cell RNA sequencing to disentangle the blood system." *Arteriosclerosis, thrombosis, and vascular biology* 41.3 (2021): 1012-1018.

BACKGROUND: SINGLE-CELL RNA-SEQ

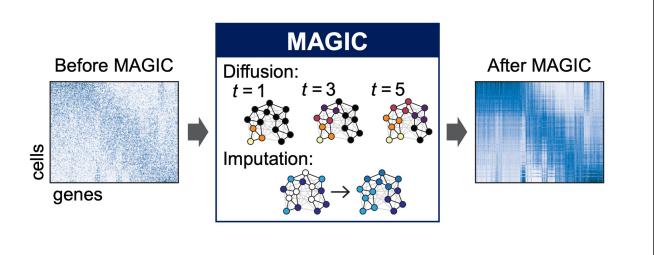
Workflow of single-cell RNA-seq (scRNA-seq) analysis



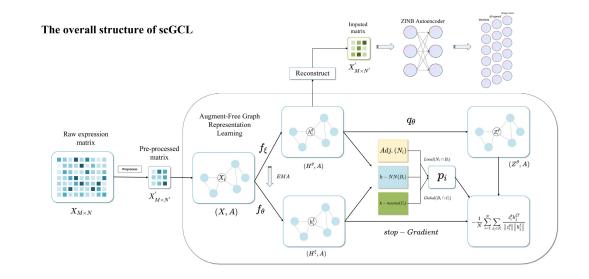
Luecken, Malte D., and Fabian J. Theis. "Current best practices in single-cell RNA-seq analysis: a tutorial." *Molecular systems biology* 15.6 (2019): e8746.

Cell-Gene Matrix as a Graph Structure

- Graphs facilitate clustering algorithms such as the min-cut algorithm (spectral clustering)
- Graphs enable a better understanding of paths of progression or trajectories of differentiation
- Graphs capture relationships among cells and facilitate message-passing schemes for information propagation



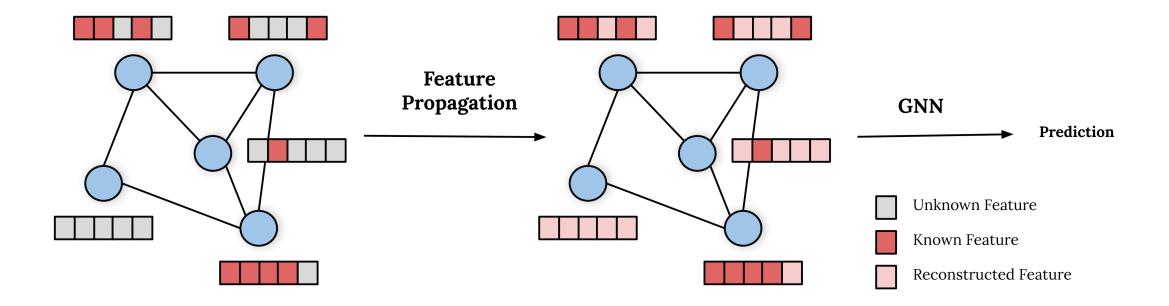
MAGIC (van Dijk et al., 2018)



scGCL (Xiong et al., 2023)

Van Dijk, David, et al. "Recovering gene interactions from single-cell data using data diffusion." *Cell* 174.3 (2018): 716-729. Xiong, Zehao, et al. "scGCL: an imputation method for scRNA-seq data based on graph contrastive learning." *Bioinformatics* 39.3 (2023): btad098.

- Motivation: In many real-world applications, features are partially available
- Idea: General approach for handling missing features in graph machine learning based on minimizing Dirichlet energy



- Motivation: In many real-world applications, features are partially available
- Idea: General approach for handling missing features in graph machine learning based on minimizing Dirichlet energy

Dirichlet Energy	Analytic Approach
$\ell(\mathbf{x},G) = \frac{1}{2}\mathbf{x}^{ op} \mathbf{\Delta}\mathbf{x} = \frac{1}{2}\sum_{ij} \tilde{a}_{ij}$	$(x_i - x_j)^2$
$egin{aligned} {f Gradient\ flow}\ {\dot {f x}}(t) &= - abla \ell({f x}(t)) = -{f \Delta {f x}}(t) \end{aligned}$	
Heat Diffusion Equation $\dot{\mathbf{x}}(t) = -\mathbf{\Delta}\mathbf{x}(t)$ (IC) $\mathbf{x}(0) = \begin{bmatrix} \mathbf{x}_k \\ \mathbf{x}_u(0) \end{bmatrix}$	(BC) $\mathbf{x}_k(t) = \mathbf{x}_k$
$\begin{bmatrix} \dot{\mathbf{x}}_k(t) \\ \dot{\mathbf{x}}_u(t) \end{bmatrix} = - \begin{bmatrix} 0 & 0 \\ \mathbf{\Delta}_{uk} & \mathbf{\Delta}_{uu} \end{bmatrix} \begin{bmatrix} \mathbf{x}_k \\ \mathbf{x}_u(t) \end{bmatrix} = -$	
$ abla_{\mathbf{x}_u}\ell=0$ \longrightarrow $\mathbf{x}_u=-L$	$\mathbf{\Delta}_{uu}^{-1}\mathbf{\Delta}_{ku}^{ op}\mathbf{x}_k \ \mathcal{O}(\mathcal{V}_u ^3)$

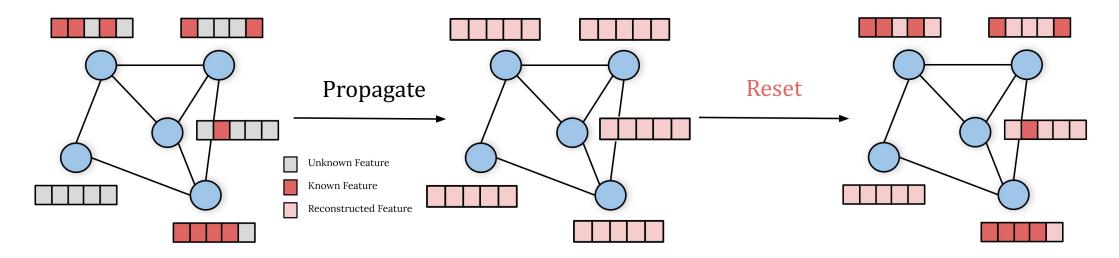
- Motivation: In many real-world applications, features are partially available
- Idea: General approach for handling missing features in graph machine learning based on minimizing Dirichlet energy

Analytic ApproachIterative Approach
$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - h \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \Delta_{uk} & \Delta_{uu} \end{bmatrix} \mathbf{x}^{(k)}$$
 $= \left(\mathbf{I} - \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ h\Delta_{uk} & h\Delta_{uu} \end{bmatrix}\right) \mathbf{x}^{(k)} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -h\Delta_{uk} & \mathbf{I} - h\Delta_{uu} \end{bmatrix} \mathbf{x}^{(k)}$ when $h = 1$, $\tilde{\mathbf{A}} = \mathbf{I} - \Delta = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} - \begin{bmatrix} \Delta_{kk} & \Delta_{ku} \\ \Delta_{uu} \end{bmatrix} = \begin{bmatrix} \mathbf{I} - \Delta_{kk} & -\Delta_{ku} \\ -\Delta_{uk} & \mathbf{I} - \Delta_{uu} \end{bmatrix}$ $\mathbf{x}^{(k+1)} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \tilde{\mathbf{A}}_{uk} & \tilde{\mathbf{A}}_{uu} \end{bmatrix} \mathbf{x}^{(k)}$

- Motivation: In many real-world applications, features are partially available
- Idea: General approach for handling missing features in graph machine learning based on minimizing Dirichlet energy

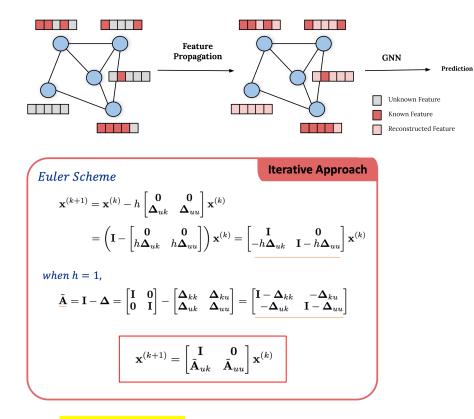
$$\mathbf{x}^{(k+1)} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \tilde{\mathbf{A}}_{uk} & \tilde{\mathbf{A}}_{uu} \end{bmatrix} \mathbf{x}^{(k)} \begin{vmatrix} 1 \end{pmatrix} \text{Propagate: } \mathbf{x}^{(k+1)} = \tilde{\mathbf{A}} \mathbf{x}^{(k)} = \begin{bmatrix} \tilde{\mathbf{A}}_{kk} & \tilde{\mathbf{A}}_{ku} \\ \tilde{\mathbf{A}}_{uk} & \tilde{\mathbf{A}}_{uu} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{x}_{k}^{(k)} \\ \mathbf{x}_{u}^{(k)} \end{bmatrix} = \begin{bmatrix} \tilde{\mathbf{A}}_{kk} \mathbf{x}_{k}^{(k)} + \tilde{\mathbf{A}}_{ku} \mathbf{x}_{u}^{(k)} \\ \tilde{\mathbf{A}}_{uk} \mathbf{x}_{k}^{(k)} + \tilde{\mathbf{A}}_{uu} \mathbf{x}_{u}^{(k)} \end{bmatrix}$$

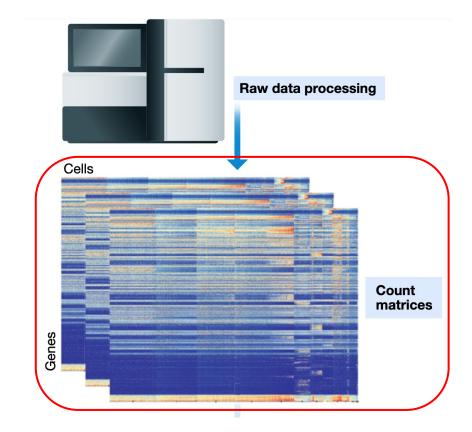
2) Reset:
$$\mathbf{x}_{k}^{(k+1)} = \mathbf{x}_{k}^{(0)} \rightarrow \mathbf{x}^{(k+1)} = \begin{bmatrix} \mathbf{x}_{k}^{(0)} \\ \tilde{\mathbf{A}}_{uk} \mathbf{x}_{k}^{(k)} + \tilde{\mathbf{A}}_{uu} \mathbf{x}_{u}^{(k)} \end{bmatrix}$$



MOTIVATION: scrna-seq data imputation using feature propagation

Research Direction: Feature Propagation on scRNA-seq data





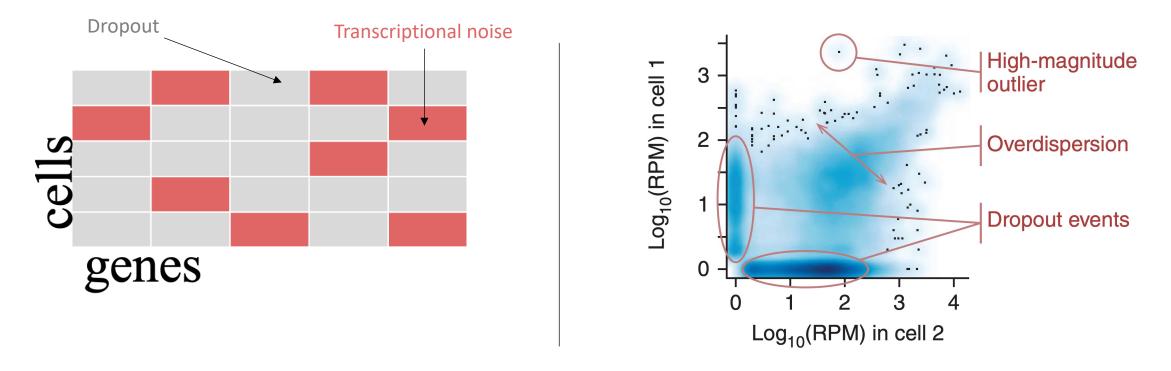
* Challenges

- 1. The information regarding which features are missing or noisy is not provided
- 2. Biologically relevant graph structure is not provided

MOTIVATION: scrna-seq data imputation using feature propagation

Challenge 1) Missing and noise in cell-gene matrix

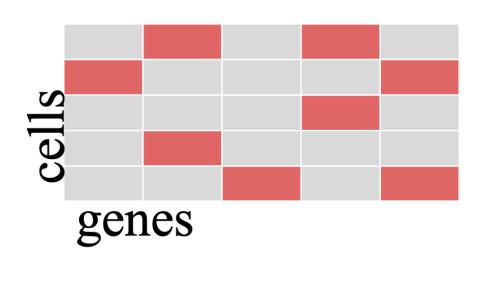
- Zero-values (Missing): Often regarded as a dropout (e.g., false-zeros)
- Non-zero values (Noise): Might capture biologically irrelevant signals (e.g., batch effects, transcriptional noise)

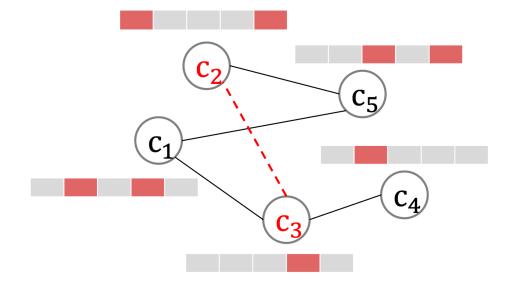


Careful handling of both <u>zero-values</u> and <u>non-zero values</u> is crucial

MOTIVATION: scrna-seq data imputation using feature propagation

- Challenge 2) Biologically relevant graph structure is not provided
 - kNN Graph based on initial sparse matrix may not be optimal

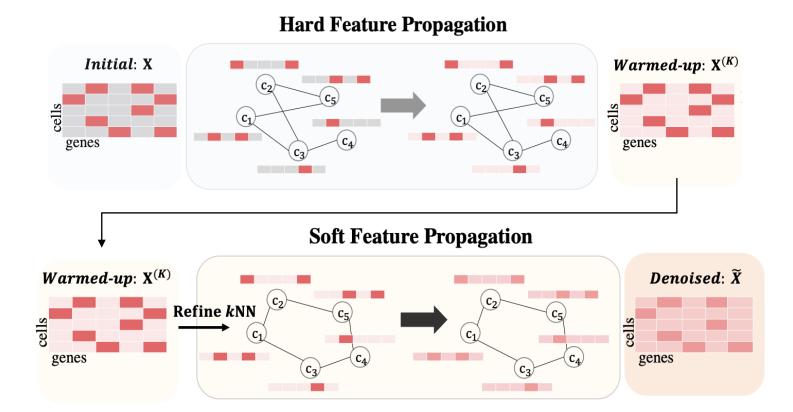




< kNN Graph on sparse cell-gene matrix >

When generating a graph, it is essential to carefully consider the biologically relevant relationships among cells

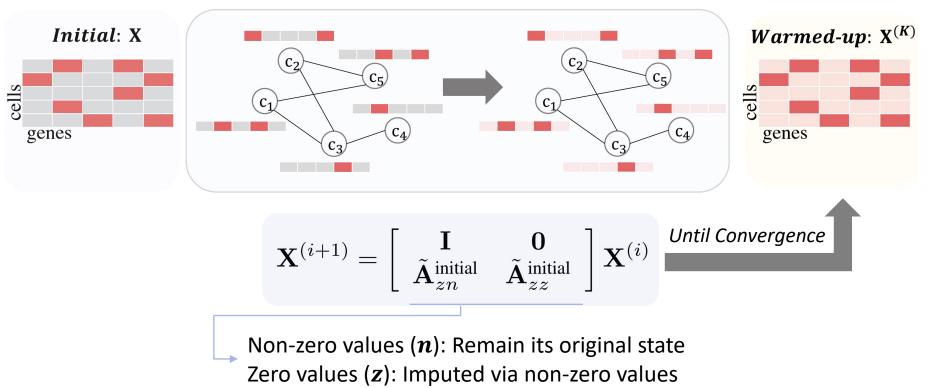
Overall Framework of scFP



- 1) Hard Feature Propagation
- 2) Refine *k*NN Graph
- 3) Soft Feature Propagation

1) Hard Feature Propagation

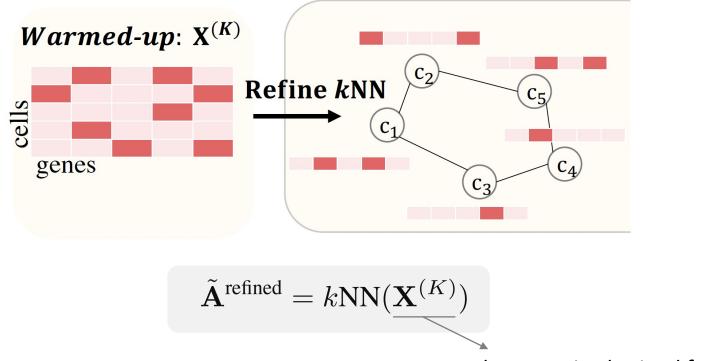
- Impute zero values (dropout) via observed gene expression and obtain warmed-up cell-gene matrix
- Assumption: Imputing zeros (dropout) is more significant than denoising non-zeros at the initial stage



Hard Feature Propagation

2) Refine kNN Graph

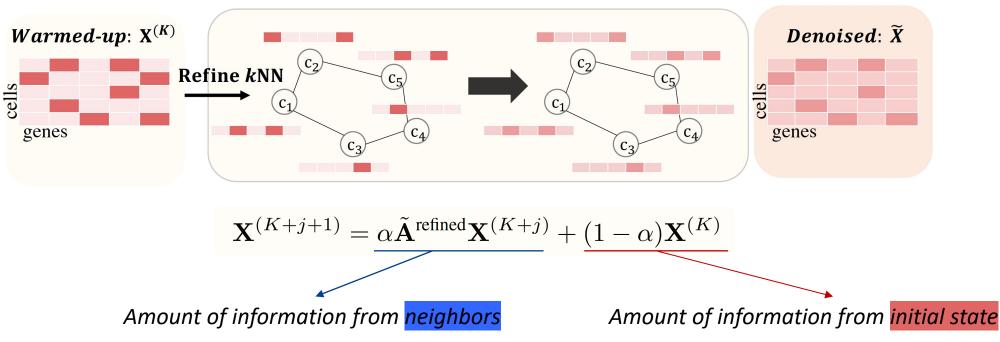
- Build *k*NN Graph via warmed-up cell-gene matrix
- Compared to initial kNN Graph, it would potentially reveal hidden or implicit graph structures



Warmed-up matrix obtained from Hard FP

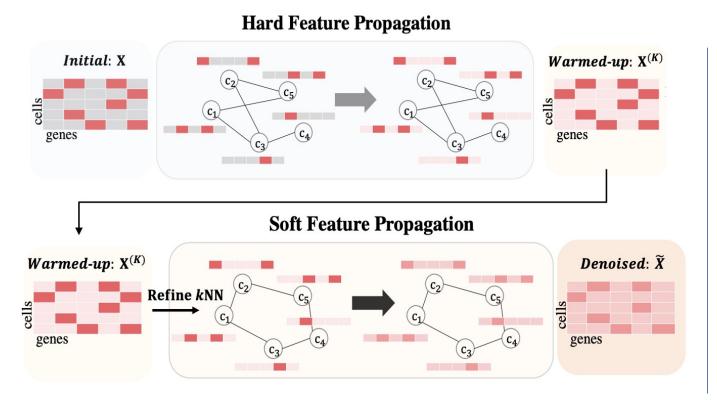
3) Soft Feature Propagation

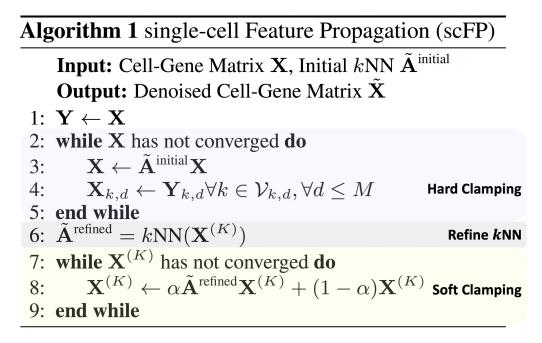
- Denoise observed gene expression (irrelevant signals)
 - Focus on updating non-zero values \rightarrow used constant α as 0.99 during experiments



Soft Feature Propagation

In a nutshell,

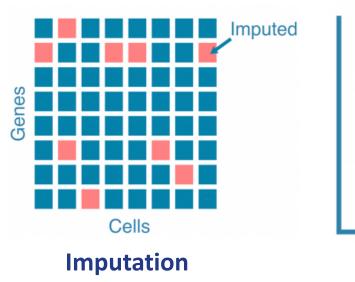


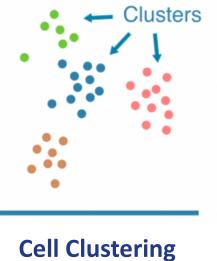


Impute <u>zeros</u> (Dropouts) \rightarrow Refine kNN Graph \rightarrow Denoise <u>non-zeros</u> (Irrelevant signals)

Data Statistics & Evaluation Metrics

Data	# of Cells	# of Genes	# of Subgroups
Baron Mouse	1,886	14,861	13
Mouse ES cells	2,717	24,047	4
Mouse bladder cells	2,746	19,771	16
Zeisel	3,005	19,972	7
Baron Human	8,569	20,125	14
Shekhar mouse retina cells	27,499	13,166	19





1) Imputation Task

• Root Mean Square Error (RMSE)

$$RMSE = \sqrt{\sum_{i=1}^{N} \frac{y_i - \hat{y}_i}{N}}$$

N: # of cells y_i : ground-truth gene expression *i*-th cell \hat{y}_i : predicted gene expression *i*-th cell

2) Cell Clustering Task

• Adjusted Rand Index (ARI)

$$ARI = \frac{RI - E[RI]}{max(RI) - E[RI]} \quad RI = \frac{a+b}{NC_2}$$

a: # of pairs successfully belong to the same cluster b: # of pairs correctly labeled as different cluster

• Normalized Mutual Information (NMI)

 $NMI = \frac{2 \times I(S;C)}{[H(S) + H(C)]}$

S: ground-truth cell type C: cluster assignment by model I(·, ·): mutual information H(·): entropy

• Clustering Accuracy (CA)

$$CA = \max_{m} \frac{\sum_{i=1}^{N} \mathbb{1}_{[s_i = m(c_i)]}}{N}$$

N: # of cells $m(\cdot)$: matching function s_i : ground-truth cell type of *i*-th cell c_i : cluster assignment of *i*-th cell

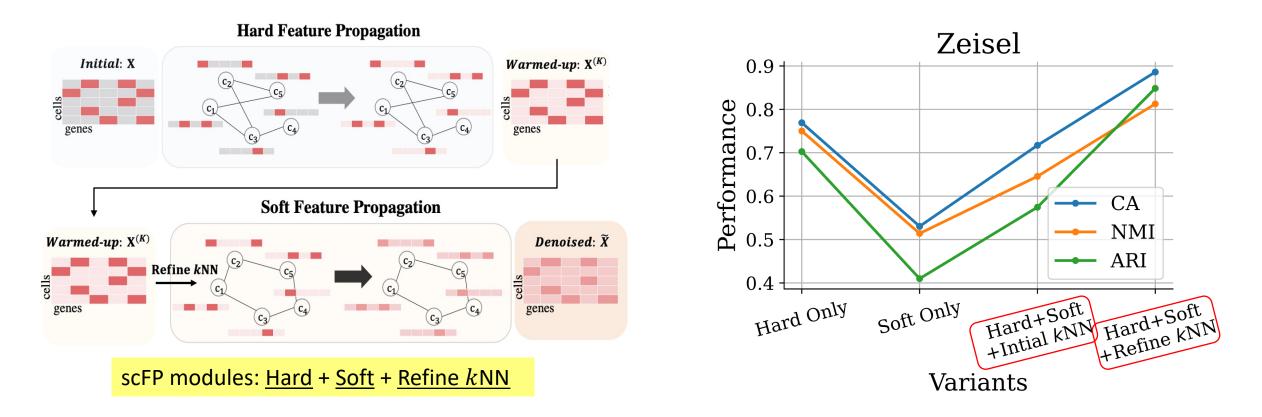
Performance on <u>imputation</u> and <u>cell clustering</u> task

				Mouse ES			Mouse Bladder			Zeisel			Baron Human		
Imputation				Dropout Rates											
	20%	40%	80%	20%	40%	80%	20%	40%	80%	20%	40%	80%	20%	40%	80%
MAGIC	0.61	0.73	0.99	0.53	0.73	1.21	0.50	0.60	0.82	0.60	0.82	1.31	0.58	0.74	1.06
DCA	0.42	0.43	0.49	0.35	0.35	0.36	0.37	0.38	0.41	0.39	0.42	0.44	0.41	0.43	0.47
AutoClass	0.63	0.76	0.98	0.53	0.75	1.23	0.52	0.64	0.82	0.60	0.84	1.32	0.59	0.76	1.08
scGCL	0.64	0.74	0.97	0.59	0.75	1.16	0.51	0.62	0.81	0.66	0.82	1.29	0.63	0.77	1.08
scFP (Ours)	0.36	0.37	0.43	0.32	0.32	0.36	0.26	0.26	0.31	0.39	0.40	0.44	0.33	0.34	0.39

Cell Clustering	Baron Mouse			Mouse ES			Mouse Bladder			Zeisel			Baron Human		
	ARI	NMI	CA	ARI	NMI	CA	ARI	NMI	CA	ARI	NMI	CA	ARI	NMI	CA
Raw	0.44	0.71	0.56	0.74	0.75	0.79	0.59	0.75	0.68	0.70	0.75	0.77	0.44	0.71	0.56
MAGIC	0.42	0.72	0.57	0.80	0.85	0.83	0.55	0.75	0.64	0.70	0.75	0.76	0.56	0.78	0.59
DCA	0.46	0.69	0.59	0.76	0.78	0.81	0.39	0.59	0.54	0.67	0.72	0.75	0.53	0.74	0.55
AutoClass	0.44	0.71	0.52	0.74	0.75	0.81	0.51	0.75	0.64	0.71	0.75	0.77	0.44	0.71	0.52
scGCL	0.43	0.72	0.54	0.73	0.75	0.79	0.53	0.75	0.64	0.65	0.70	0.73	0.50	0.78	0.62
kNN-smoothing	0.43	0.72	0.55	0.72	0.74	0.79	0.59	0.76	0.68	0.68	0.73	0.76	0.56	0.78	0.56
scFP (Ours)	0.61	0.82	0.76	0.82	0.83	0.85	0.65	0.77	0.73	0.85	0.81	0.89	0.68	0.83	0.73

The denoised matrix obtained via scFP shows promising results in both imputation and the cell clustering task

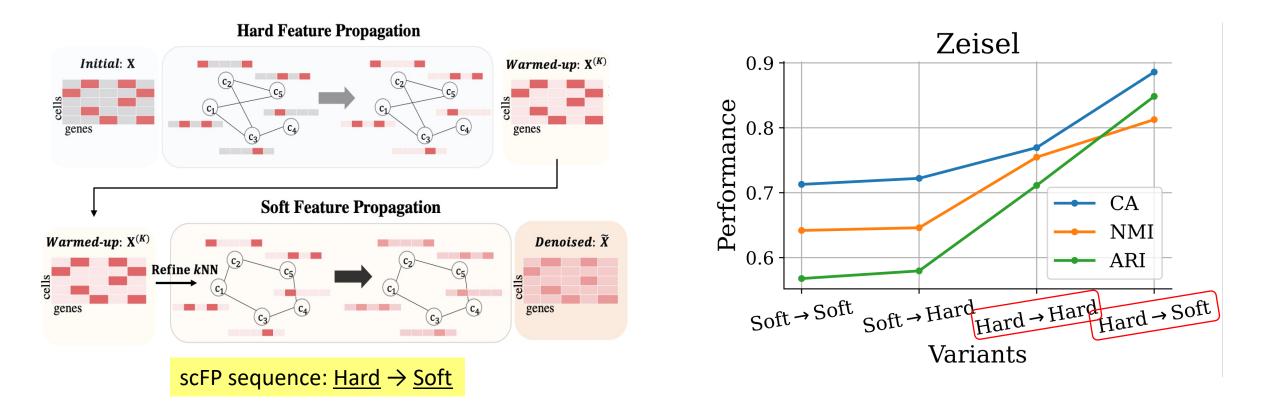
Ablation on each module in scFP



1) (*H+S+Refine kNN* outperforms *H, S only*): Using both Hard and Soft FP is beneficial

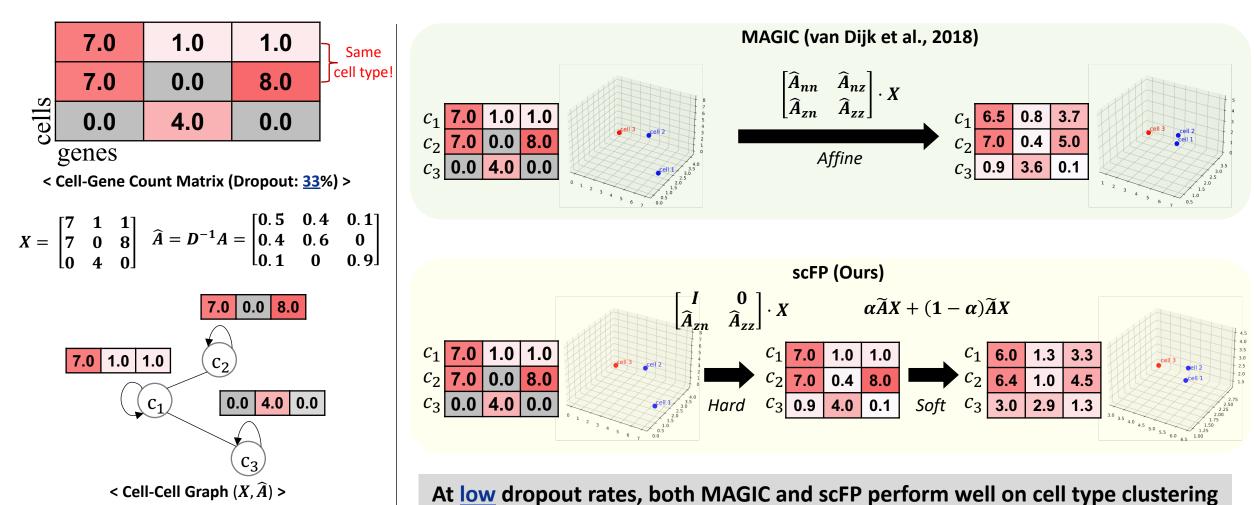
2) (*H+S+Refine kNN* outperforms *H+S+Initial kNN*): Utilization of a refined kNN graph prior to applying Soft FP is essential

Ablation on sequence of scFP

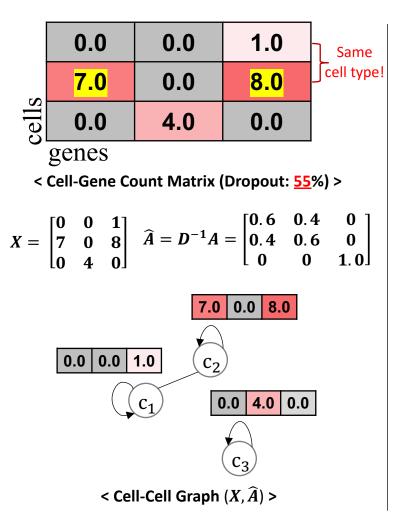


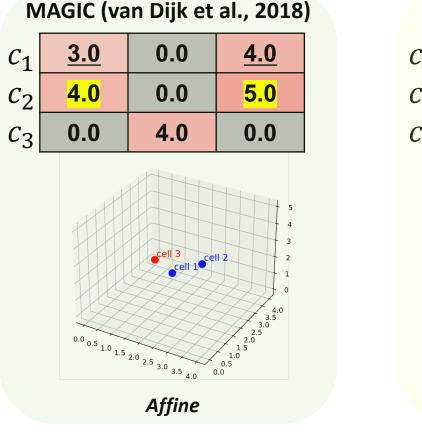
1) $(H \rightarrow \bullet \text{ outperforms } S \rightarrow \bullet)$: Initially, importance of <u>imputing zeros</u> surpasses the significance of <u>denoising non-zeros</u> 2) $(H \rightarrow S \text{ outperforms } H \rightarrow H)$: <u>Inclusion of Soft FP after Hard FP</u> further enhances obtaining a denoised matrix

Simulation Study: Risk of diffusion of false-zeros (MAGIC vs scFP) – <u>Low</u> dropout rates

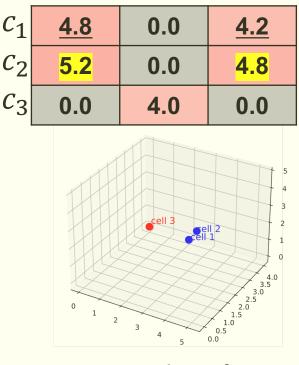


Simulation Study: Risk of diffusion of false-zeros (MAGIC vs scFP) – <u>High</u> dropout rates





scFP (Ours)



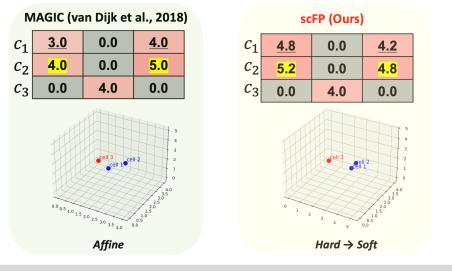
 $\textit{Hard} \rightarrow \textit{Soft}$

At <u>high</u> dropout rates, scFP better perseveres <u>the scale of original non-zero values</u> <u>thanks to *Hard Feature Propagation*</u>, while MAGIC is more vulnerable to false-zeros

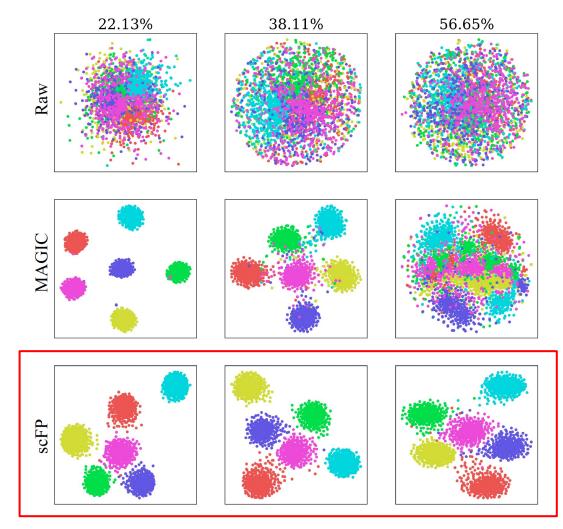
Simulation Study: Risk of diffusion of false-zeros in simulation dataset

Simulation dataset from Splatter¹

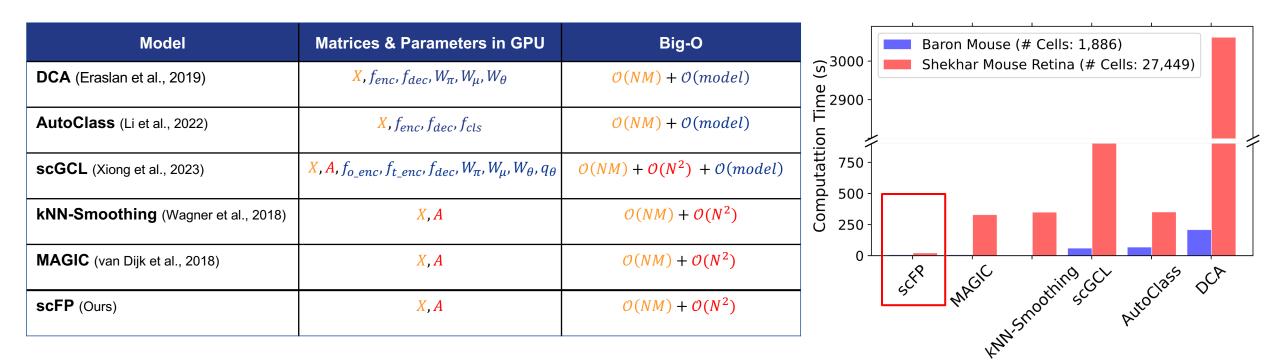
- # of Cells: 3918
- # of Genes: 11786
- # of subgroups: 6
- Dropout Rate: <u>22.13%</u>, <u>38.11%</u>, <u>56.65%</u>



At <u>high</u> dropout rates, scFP better perseveres <u>the scale of original non-zero values</u> <u>thanks to *Hard Feature Propagation*</u>, while MAGIC is more vulnerable to false-zeros



Memory & Time Complexity



< Memory Complexity (N: # of Cells, M: # of Genes) >

< Time Complexity >

Proposed scFP shows notably <u>lower computational cost</u> compared to other graph-based baselines thanks to <u>the absence of PCA computation</u> and the use of <u>sparse matrix multiplication</u>

CONCLUSION

- Nut: scRNA-seq meets Feature Propagation!
- Challenges lie in the presence of missing and noise in the cell-gene matrix and the lack of a biologically relevant graph
- To this end, we introduce scFP, a method that effectively denoises both zero values and non-zero values
- Experimental results on real-world datasets show the promising performance of scFP in imputation and cell clustering
- Keywords for scFP
 - Hard Feature Propagation
 - Refine kNN
 - Soft Feature Propagation

