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BACKGROUND: SINGLE-CELL RNA-SEQ

Svensson, Valentine, Roser Vento-Tormo, and Sarah A. Teichmann. "Exponential scaling of single-cell RNA-seq in the past decade." Nature protocols 13.4 (2018): 599-604.
Acosta, Jean, Daniel Ssozi, and Peter van Galen. "Single-cell RNA sequencing to disentangle the blood system." Arteriosclerosis, thrombosis, and vascular biology 41.3 (2021): 1012-1018.

§ Advances in single-cell RNA-seq
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BACKGROUND: SINGLE-CELL RNA-SEQ
§ Workflow of single-cell RNA-seq (scRNA-seq) analysis

Luecken, Malte D., and Fabian J. Theis. "Current best practices in single-cell RNA-seq analysis: a tutorial." Molecular systems biology 15.6 (2019): e8746. 2



BACKGROUND: AS A GRAPH
§ Cell-Gene Matrix as a Graph Structure

• Graphs facilitate clustering algorithms such as the min-cut algorithm (spectral clustering)
• Graphs enable a better understanding of paths of progression or trajectories of differentiation
• Graphs capture relationships among cells and facilitate message-passing schemes for information propagation

MAGIC (van Dijk et al., 2018) scGCL (Xiong et al., 2023)

Van Dijk, David, et al. "Recovering gene interactions from single-cell data using data diffusion." Cell 174.3 (2018): 716-729.
Xiong, Zehao, et al. "scGCL: an imputation method for scRNA-seq data based on graph contrastive learning." Bioinformatics 39.3 (2023): btad098. 3



BACKGROUND: AS A GRAPH
§ Feature Propagation (Rossi et al., 2022)

• Motivation: In many real-world applications, features are partially available
• Idea: General approach for handling missing features in graph machine learning based on minimizing Dirichlet energy

Rossi, Emanuele, et al. "On the unreasonable effectiveness of feature propagation in learning on graphs with missing node features." Learning on Graphs Conference. PMLR, 2022. 4
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𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑓𝑙𝑜𝑤

𝐻𝑒𝑎𝑡 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛

𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝐸𝑛𝑒𝑟𝑔𝑦
Analytic Approach
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𝑤ℎ𝑒𝑛 ℎ = 1,

Iterative Approach𝐸𝑢𝑙𝑒𝑟 𝑆𝑐ℎ𝑒𝑚𝑒
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MOTIVATION: SCRNA-SEQ DATA IMPUTATION USING FEATURE PROPAGATION
§ Research Direction: Feature Propagation on scRNA-seq data

1. The information regarding which features are missing or noisy is not provided
2. Biologically relevant graph structure is not provided

* Challenges
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MOTIVATION: SCRNA-SEQ DATA IMPUTATION USING FEATURE PROPAGATION

Kharchenko, Peter V., Lev Silberstein, and David T. Scadden. "Bayesian approach to single-cell differential expression analysis." Nature methods 11.7 (2014): 740-742.

§ Challenge 1) Missing and noise in cell-gene matrix
• Zero-values (Missing): Often regarded as a dropout (e.g., false-zeros)
• Non-zero values (Noise): Might capture biologically irrelevant signals (e.g., batch effects, transcriptional noise)

Dropout Transcriptional noise

Careful handling of both zero-values and non-zero values is crucial
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MOTIVATION: SCRNA-SEQ DATA IMPUTATION USING FEATURE PROPAGATION
§ Challenge 2) Biologically relevant graph structure is not provided
• 𝒌NN Graph based on initial sparse matrix may not be optimal

When generating a graph, it is essential to carefully consider the biologically relevant relationships among cells

< 𝒌NN Graph on sparse cell-gene matrix >
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SCFP: single-cell FEATURE PROPAGATION
§ Overall Framework of scFP

1) Hard Feature Propagation

2) Refine 𝒌NN Graph

3) Soft Feature Propagation
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SCFP: single-cell FEATURE PROPAGATION
§ 1) Hard Feature Propagation 
• Impute zero values (dropout) via observed gene expression and obtain warmed-up cell-gene matrix
• Assumption: Imputing zeros (dropout) is more significant than denoising non-zeros at the initial stage

Non-zero values (𝒏): Remain its original state
Zero values (𝒛): Imputed via non-zero values

Until Convergence
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SCFP: single-cell FEATURE PROPAGATION
§ 2) Refine 𝒌NN Graph
• Build 𝑘NN Graph via warmed-up cell-gene matrix
• Compared to initial 𝑘NN Graph, it would potentially reveal hidden or implicit graph structures

Warmed-up matrix obtained from Hard FP

12



SCFP: single-cell FEATURE PROPAGATION
§ 3) Soft Feature Propagation
• Denoise observed gene expression (irrelevant signals)

• Focus on updating non-zero values → used constant 𝛼 as 0.99 during experiments

Amount of information from neighbors Amount of information from initial state
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SCFP: single-cell FEATURE PROPAGATION
§ In a nutshell,

Impute zeros (Dropouts) ⟶ Refine 𝒌NN Graph ⟶ Denoise non-zeros (Irrelevant signals)
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EXPERIMENTS

• Adjusted Rand Index (ARI)

• Normalized Mutual Information (NMI)

• Clustering Accuracy (CA)

a: # of pairs successfully belong to the same cluster
b: # of pairs correctly labeled as different cluster

S: ground-truth cell type
C: cluster assignment by model
I(⋅, ⋅): mutual information
H(⋅): entropy

N: # of cells
m(⋅): matching function
𝑠!: ground-truth cell type of 𝑖-th cell
𝑐!: cluster assignment of 𝑖-th cell

2) Cell Clustering Task

• Root Mean Square Error (RMSE)

1) Imputation Task

𝑅𝑀𝑆𝐸 = &
!"#

$
𝑦! − )𝑦!
𝑁

N: # of cells
𝑦!: ground-truth gene expression 𝑖-th cell
&𝑦!: predicted gene expression 𝑖-th cell

§ Data Statistics & Evaluation Metrics

Imputation Cell Clustering
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EXPERIMENTS
§ Performance on imputation and cell clustering task

The denoised matrix obtained via scFP shows promising results in both imputation and the cell clustering task

Imputation

Cell Clustering
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EXPERIMENTS
§ Ablation on each module in scFP

1) (H+S+Refine kNN outperforms H, S only): Using both Hard and Soft FP is beneficial
2) (H+S+Refine kNN outperforms H+S+Initial kNN): Utilization of a refined kNN graph prior to applying Soft FP is essential

scFP modules: Hard + Soft + Refine 𝑘NN

17



EXPERIMENTS
§ Ablation on sequence of scFP

1) (H → • outperforms S → •): Initially, importance of imputing zeros surpasses the significance of denoising non-zeros
2) (H → S outperforms H → H): Inclusion of Soft FP after Hard FP further enhances obtaining a denoised matrix

scFP sequence: Hard → Soft
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EXPERIMENTS
§ Simulation Study: Risk of diffusion of false-zeros (MAGIC vs scFP) – Low dropout rates
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At low dropout rates, both MAGIC and scFP perform well on cell type clustering
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EXPERIMENTS
§ Simulation Study: Risk of diffusion of false-zeros (MAGIC vs scFP) – High dropout rates
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thanks to Hard Feature Propagation, while MAGIC is more vulnerable to false-zeros
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EXPERIMENTS
§ Simulation Study: Risk of diffusion of false-zeros in simulation dataset

Simulation dataset from Splatter1
• # of Cells: 3918
• # of Genes: 11786
• # of subgroups: 6
• Dropout Rate: 22.13%, 38.11%, 56.65%

1) Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol 18, 174 (2017). https://doi.org/10.1186/s13059-017-1305-0 21



EXPERIMENTS
§ Memory & Time Complexity

< Memory Complexity (𝑁: # 𝑜𝑓 𝐶𝑒𝑙𝑙𝑠, 𝑀: # 𝑜𝑓 𝐺𝑒𝑛𝑒𝑠) > < Time Complexity >

Proposed scFP shows notably lower computational cost compared to other graph-based baselines
thanks to the absence of PCA computation and the use of sparse matrix multiplication

Model Matrices & Parameters in GPU Big-O

DCA (Eraslan et al., 2019) 𝑋, 𝑓#$%, 𝑓&#%,𝑊',𝑊(,𝑊) 𝒪 𝑁𝑀 + 𝒪 𝑚𝑜𝑑𝑒𝑙

AutoClass (Li et al., 2022) 𝑋, 𝑓#$%, 𝑓&#%, 𝑓%*+ 𝒪 𝑁𝑀 + 𝒪 𝑚𝑜𝑑𝑒𝑙

scGCL (Xiong et al., 2023) 𝑋, 𝐴, 𝑓,_#$%, 𝑓._#$%, 𝑓&#%,𝑊',𝑊(,𝑊), 𝑞) 𝒪 𝑁𝑀 + 𝒪(𝑁/) + 𝒪 𝑚𝑜𝑑𝑒𝑙

kNN-Smoothing (Wagner et al., 2018) 𝑋, 𝐴 𝒪 𝑁𝑀 + 𝒪(𝑁/)

MAGIC (van Dijk et al., 2018) 𝑋, 𝐴 𝒪 𝑁𝑀 + 𝒪(𝑁/)

scFP (Ours) 𝑋, 𝐴 𝒪 𝑁𝑀 + 𝒪(𝑁/)
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CONCLUSION
§ Nut: scRNA-seq meets Feature Propagation! 

§ Challenges lie in the presence of missing and noise in the cell-gene matrix and the lack of a biologically relevant graph

§ To this end, we introduce scFP, a method that effectively denoises both zero values and non-zero values

§ Experimental results on real-world datasets show the promising performance of scFP in imputation and cell clustering

§ Keywords for scFP
• Hard Feature Propagation
• Refine kNN
• Soft Feature Propagation
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